Search results

Search for "quasi-divided cell" in Full Text gives 1 result(s) in Beilstein Journal of Organic Chemistry.

Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate

  • Hisanori Senboku,
  • Mizuki Hayama and
  • Hidetoshi Matsuno

Beilstein J. Org. Chem. 2022, 18, 1040–1046, doi:10.3762/bjoc.18.105

Graphical Abstract
  • , Hokkaido 060-8628, Japan 10.3762/bjoc.18.105 Abstract Electrochemical Friedel–Crafts-type amidomethylation was successfully carried out by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborates, such as iPr2NHEtBF4. Constant current electrolysis of
  • 1,3,5-trimethoxybenzene or indoles in DMA containing 0.1 M iPr2NHEtBF4 using an undivided cell equipped with a Pt plate cathode and a Pt wire anode (a quasi-divided cell) resulted in selective formation of N-acyliminium ions of DMA at the anode, which reacted with arenes to give the corresponding
  • amidomethylated products in good to high yields. Keywords: electrochemical oxidation; Friedel–Crafts type amidomethylation; N-acyliminium ion; quasi-divided cell; trialkylammonium salt; Introduction Oxidation of amides generates useful intermediates, N-acyliminium ions, which have been widely used in organic
PDF
Album
Supp Info
Letter
Published 18 Aug 2022
Other Beilstein-Institut Open Science Activities